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ABSTRACT

In this study, a newmethodology is developed to improve the climate simulation of state-of-the-art coupled

global climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the close

connection between the interannual variability and climatological states, the distinctive relation between the

intermodel diversity of the interannual variability and that of the basic state is found. Based on this relation,

the simulated interannual variabilities can be improved, by correcting their climatological bias. To test this

methodology, the dominant intermodel difference in precipitation responses during El Niño–Southern
Oscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominant

intermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project

(CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominant
intermodel difference is significantly correlated with the basic states. The models with wetter (dryer) clima-
tology than the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positive
ENSO precipitation anomalies to the east (west). Based on the model’s systematic errors in atmospheric

ENSO response and bias, the models with better climatological state tend to simulate more realistic atmo-

spheric ENSO responses.

Therefore, the statistical method to correct the ENSO responsemostly improves the ENSO response. After

the statistical correction, simulating quality of theMMEENSO precipitation is distinctively improved. These

results provide a possibility that the present methodology can be also applied to improving climate projection

and seasonal climate prediction.

1. Introduction

Since the fundamental ENSO theory was established,

there has been tremendous improvement over the last

three decades or so in modeling the ENSO variability,

using atmosphere–ocean global climatemodels (AOGCMs)

(Guilyardi et al. 2009). As well as the improvement of

the individual model that has been reported in terms of

ENSO-related atmospheric–ocean coupled feedbacks,

in addition to the overall ENSO variability (Kim et al.

2008; Neale et al. 2008; Watanabe et al. 2010; Gent et al.

2011; Ham et al. 2010, 2012), a group of models that

participated in the most recent phase (5) of the Coupled

Model Intercomparison Project (i.e., CMIP5; Taylor

et al. 2012) have the ability to simulate a more realistic

ENSO than those in previous phases of CMIP (e.g.,

CMIP2 or CMIP3) (AchutaRao and Sperber 2006; Kug

et al. 2012; Kim and Yu 2012; Kim et al. 2013; Bellenger

et al. 2014).

However, there are still several systematic problems

in simulating sea surface temperature (SST) variability

during the ENSO, using the state-of-the-art AOGCMs.

One of the common problems is that the center of the

ENSO-related SST variability over the tropical Pacific

shifts to the west, compared to the observed location

(Kug et al. 2012; Capotondi and Wittenberg 2013), and

sometimes it extends too far into the western Pacific,

where there is a negative SST anomaly in the observa-

tion during El Niño (Ham et al. 2012, 2014). Those

systematic differences between the simulated and the

observed ENSO SST cause a relatively lower seasonal
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forecasting skill using the climate model over the equa-

torial western and far eastern Pacific than over other re-

gions (Ham et al. 2014). It is also problematic that the

meridional width of the simulated ENSO SST is not as

wide as the observed width (Neale et al. 2008; Zhang and

Jin 2012). In addition, most of the climate models still

have difficulties in simulating two independent types of El

Niño events [i.e., the central Pacific (CP) and eastern
Pacific (EP) types of El Niño] (Yu and Kim 2010; Ham

andKug 2012; Kug et al. 2012; Yeh et al. 2014b; Jang et al.

2013).

Those systematic errors in the ENSO-related SST are

strongly coupled with those of atmospheric variability

during the ENSO event. Consistent with the westward

shift of the center of the ENSO SST anomalies, the

positive precipitation anomalies during El Niño are also
shifted to the west (Misra et al. 2007). In addition, the

extension of positive SST anomalies to the tropical

western Pacific rather increases the local convective

activity, where negative precipitation anomalies are

observed during El Niño events (Ham and Kug 2014).

Those systematic errors in the precipitation response

are reported to be responsible for the failure of simu-

lating two types of El Niño events in climate models
(Ham and Kug 2012). Also, it is responsible for the

westward extension of ENSO-related positive zonal

wind stress anomalies (Kirtman et al. 2002), which in-

duces the shortened period of the ENSO (Neale et al.

2008) or unrealistic ENSO phase-locking (Ham et al.

2012; Ham andKug 2014). In addition, the narrow zonal

wind stress response in the latitudinal direction also

contributes to the shorter period of the ENSO in cli-

mate models. These are all crucial issues, as the quality

of simulating realistic ENSO-related atmospheric re-

sponses determines the quality of the midlatitude tele-

connection pattern during El Niño (Spencer and Slingo

2003).

However, those common systematic errors in the

ENSO-related atmospheric response are not fully de-

scribed, and are only partially reported in previous

studies. That is, just what the common systematic errors

in the simulated ENSO-related fields are has not yet

been quantitatively investigated, nor what can be re-

lated to those systematic errors. Thatmight be due to the

fact that the systematic errors in ENSO-related vari-

ables are too diverse frommodel tomodel (Dai 2006), as

they are determined by model formulations that vary

considerably among climate models. These errors are

also caused by various spatial distributions of the mean

state (Choi et al. 2012; Yeh et al. 2012), the strength of

the annual cycle (Kirtman et al. 2002; An et al. 2010),

and various air–sea coupled feedbacks (Kim et al. 2013;

Yeh et al. 2014a) in climate models.

The linkage between the mean bias (i.e., error in the

mean state) and the systematic error in the ENSO

properties is based on the notion that the ENSO prop-

erties are dependent on the tropical mean state. Fedorov

and Philander (2001) argued that the excitation of two

distinct unstable modes related to the ENSO is con-

trolled by the mean thermocline depth and the strength

of the mean easterly winds. ENSO with a longer period

is related to a relatively deep thermocline depth,

whereas ENSO with short periods is associated with

shallow thermocline depth. As well as the period and

amplitude of theENSO, two distinctmodes are linked to

different SST action centers, implying that the climato-

logical state can control the spatial pattern of ENSO

(Bejarano and Jin 2008). Their findings are supported by

the decadal modulation of ENSO properties (Wang and

An 2001; An et al. 2010; Choi et al. 2011). An et al.

(2010) showed that the decades with a warm mean state

over the western Pacific are the periods when the am-

plitude of the ENSO is reduced. In addition, Choi et al.

(2011) argued that decades with western Pacific warm-

ing and associated subsurface temperature change in the

mean state are when the SST action center shifts to the

west (i.e., higher occurrence of CP-type El Niño). They
additionally emphasized that the increased climatologi-
cal convection over the western Pacific related to the
local SST warming also acts to move the ENSO-related
convective activity and SST action center to the west.
A similar dynamical connection between the mean

bias and systematic errors during the ENSO in climate

models is reported in previous studies (Lau and Nath

2000; Annamalai and Liu 2005; Turner et al. 2005;

Annamalai et al. 2007). Turner et al. (2005) demon-

strated that the correction of systematic model error

in the coupled model using ocean-surface heat flux

adjustment has significant benefits in improving the

monsoon–ENSO teleconnection. Ham et al. (2013) pointed

out that the version of the Seoul National University

(SNU) model with deeper mean thermocline depth over

the equatorial central Pacific has less occurrence of CP

El Niño. Jang et al. (2013) argued that the wet mean

precipitation over the western Pacific is responsible for

the quality of simulating two types of El Niño events, by
modifying the ENSO-related atmospheric response.
Ham and Kug (2014) also showed that the mean bias in

the precipitation plays a role in determining the quality

of ENSO phase-locking in CMIP models.

This raises an important question, in terms of both

the climate modeling and understanding systematic

errors: Does the model with better climatology have

less systematic errors? To answer this question, it is

worthwhile to investigate the intermodel difference in

the systematic errors. In addition, as probably not all of
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the systematic errors related to the ENSO are due to

the mean state, we have to raise the following question,

to answer the first one: Which part of the systematic

error is well linked to (or caused by) the mean state?

Once it is detected, can we identify whether the sys-

tematic error related to the mean state is the dominant

one?

Therefore, in this study, the dominant intermodel

difference in the systematic error related to the ENSO

will be detected by analyzing the multimodel output in

CMIP5 and investigating those dominant error patterns

that are associated with the mean state. Then, we will

check whether the model with smaller mean bias suffers

fewer systematic errors related to ENSO. Section 2 de-

scribes the CMIP5 and observational data used in this

study. In section 3, we will show the intermodel differ-

ences in the ENSO-related atmospheric responses and

link themwith the differences in the climatological state.

Section 4 introduces the method to improve the ENSO

systematic error through the mean bias correction.

A summary and conclusions are presented in section 5.

2. Model outputs and observational data

The historical integrations produced by the CMIP5

models are used in this study. Thirty-four climate

models with single ensemble are analyzed. Note that the

CMIP5 models are selected based on the availability at

the analyzing time. Model references, details on the in-

stitutions where the models were run, and the in-

tegration periods are summarized in Table 1. Except for

two models, the total integration period is 156 years

from 1850, but all analyses in this study are based on the

period from 1950. Note that the major results are not

sensitive to the data period. The linear trend is removed

before the analysis.

TABLE 1. Description of the model from the CMIP5 archives.

Modeling group Model number CMIP model Integration period (yr)

MPI-M 1 MPI-ESM-LR 156

CSIRO/Queensland Climate Change

Centre of Excellence (QCCCE)

2 CSIRO-Mk3.6.0 156

NOAA/GFDL 3 GFDL-ESM2G 156

MPI-M 4 MPI-ESM-MR 156

IPSL 5 IPSL-CM5A-LR 156

IPSL 6 IPSL-CM5A-MR 156

CCSR, JAMSTEC 7 MIROC-ESM-CHEM 156

CCSR, JAMSTEC 8 MIROC-ESM 156

Met Office Hadley Centre 9 HadGEM2-ES 146

INM 10 INM-CM4 156

CCSR, JAMSTEC 11 MIROC5 156

NOAA/GFDL 12 GFDL-CM3 156

Norwegian Climate Centre (NCC) 13 NorESM1-ME 156

NCAR 14 CESM1-CAM5 156

NASA GISS 15 GISS-E2-H-CC 156

Met Office Hadley Centre 16 HadGEM2-AO 156

NCC 17 NorESM1-M 156

College of Global Change and Earth System

Science (GCESS), Beijing Normal University

18 BNU-ESM 156

NOAA/GFDL 19 GFDL-ESM2M 156

Meteorological Research Institute (MRI) 20 MRI-CGCM3 156

Met Office Hadley Centre 21 HadGEM2-CC 146

CCCma 22 CanESM2 156

Bjerknes Centre for Climate Research (BCCR) 23 BCC-CSM1.1(m) 156

CMCC 24 CMCC-CM5 156

NASA GISS 25 GISS-E2-H 156

NCAR 26 CCSM4 156

NCAR 27 CESM4-BGC 156

First Institute of Oceanography (FIO) 28 FIO-ESM 156

Météo-France 29 CNRM-CM5 156

BCCR 30 BCC-CSM1.1 156

CMCC 31 CMCC-CM 156

IPSL 32 IPSL-CM5B-LR 156

NASA GISS 33 GISS-E2-R-CC 156

NASA GISS 34 GISS-E2-R 156
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For the observed precipitation, we use the Global

Precipitation Climatology Project (GPCP) monthly-

mean precipitation data during 1979–2005, from WMO/

WCRP/GEWEX (Adler et al. 2003). The observed SST

data are from the National Oceanic and Atmospheric

Administration (NOAA) Extended Reconstructed Sea

Surface Temperature dataset version 3 (ERSST.v3b)

during 1950–2005, from NOAA/OAR/ESRL (http://

www.esrl.noaa.gov/psd/). The observed linear trend is

also removed before analysis.

3. The intermodel differences in the ENSO-related
atmospheric responses

In simulating the ENSO characteristics, there will be

various systematic errors of climate models. In this

study, for simplicity we focused on systematic errors in

the precipitation pattern associated with ENSO. The

precipitation patterns are the most important for de-

termining not only the ENSO characteristics but also

extratropical teleconnections. Figure 1 shows the pre-

cipitation anomalies regressed onto the Niño-3.4 index
(i.e., SST anomalies averaged over 58S–58N, 1708–
1208W) during the December–February (DJF) season.

Note that the unit of the regression is mmday21 8C21. In

the observation, the positive precipitation anomalies are

shown over the central Pacific, and the center of the

precipitation anomalies is located slightly south of the

equator (Harrison and Vecchi 1999). At the same time,

there are negative precipitation anomalies over the off-

equatorial western Pacific. The negative precipitation

over the SouthernHemisphere is along the South Pacific

convergence zone (SPCZ). Those overall features

are detected somewhat in the multimodel ensemble

(MME) result. However, several systematic errors are

also clearly shown. First, the center of the positive

FIG. 1. The precipitation anomalies regressed onto the Niño-3.4 index during the December–February (DJF) season, in the observation

(21), multimodel ensemble (MME; 0), and each model (1–34; model numbers are given in Table 1). Note that the unit of the regression is

mmday21 8C21.
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precipitation anomalies is shifted to the west by about

208 longitude. This is one of the well-known systematic

errors in many climate models (Wittenberg et al. 2006;

Kug et al. 2008, 2012; Ham and Kug 2012; Zhang and

Sun 2014). In addition, the meridional width of the

positive precipitation is slightly narrower than the ob-

served. The negative precipitation anomalies over the

off-equatorial western Pacific are weaker than the ob-

served, and also extend too much to the east. The neg-

ative precipitation along the SPCZ is also systematically

weaker in the MME.

The systematic errors in individual models are gen-

erally larger than that of the MME, and these are quite

diverse from model to model. For example, several

models simulate positive precipitation anomalies over

the western Pacific, implying that the atmospheric re-

sponse during the ENSO shifts too far to the west

(model numbers 1–4). On the other hand, some models

simulate realistic positive precipitation centers (model

numbers 24–27) and even eastward-shifting centers

(model numbers 33–34). Some models simulate horse-

shoe patterns of the positive precipitation anomalies

(model numbers 1, 2, 5, and 6), which is not clear in the

observation. The spatial pattern of negative pre-

cipitation also varies from model to model. Some

models simulate too strong negative precipitation over

the off-equatorial central-eastern Pacific (model num-

bers 3, 6, 12, 20, 22, 25, 31, 33, and 34), and negative

precipitation to the south of the equator is zonally

elongated in many models, probably related to the bias

in the SPCZ (i.e., the double ITCZ problem; Lin 2007).

It should be pointed out that the ENSO-related re-

sponses of the individual models are quite different from

that in the MME, meaning that the MME response does

not represent the atmospheric ENSO response of the

individual model. In other words, in addition to the

MME response, it is worthwhile to examine the inter-

model difference to increase our understanding of the

simulated ENSO response.

To investigate the intermodel differences in the

ENSO-related atmospheric responses, we first calculate

the deviation of each model’s atmospheric ENSO re-

sponse from the MME (a total of 34 deviation maps).

Then, we apply empirical orthogonal function (EOF)

analysis, using those 34 deviation maps. This analysis

provides information of the dominant intermodel dif-

ferences and model uncertainties in the CMIP5 models.

So, we can quantify which part of the ENSO-related

atmospheric response is most difficult to simulate in the

climate models. Figure 2 shows three dominant EOF

eigenvectors of intermodel differences in the ENSO-

related precipitation. The first EOF exhibits a positive

signal over the equatorial central Pacific, whose peak is

around 1708W, and a negative signal over the off-

equatorial western Pacific. As the center of positive

precipitation anomalies in the MME is around 1708E
(shown with contours), this implies that the first EOF is

associated with the zonal location difference of positive

precipitation during El Niño, among the CMIP5models.
That is, in the model in which the first EOF is positively
projected, the center of positive precipitation anomalies
is shifted to the east compared to the MME response,
presumably close to the observational one, while a neg-
ative projection of the first EOF denotes a westward shift
of the El Niño–related convection anomaly, suggesting

a more serious bias. In addition, the first EOF also

contributes to a slight north–south shift of the negative

precipitation anomalies over the western Pacific. In the

same way, the second (third) EOF is associated with the

southward (northward) shift of the positive convection

center, during El Niño. It is obvious that the amplitude
of the anomalies in the second and third EOF is weaker,
than that in the first EOF.
This above analysis shows that the difference in the

zonal location of the ENSO-related convection center is

the most dominant of the intermodel differences in

CMIP5. Before investigating the zonal shift of positive

ENSO precipitation associated with the first EOF in

more detail, one might want to confirm that the single

dominant EOF well represents the zonal location dif-

ference among climate models. To confirm this point,

the ENSO-related precipitation anomalies in each

model are reconstructed by using only the first EOF;

then, the center of positive precipitation anomalies is

calculated, as follows:

X5

ð
PRCP(x)x dx
ð
PRCP(x) dx

, (1)

where PRCP(x) denotes the Niño-3.4-regressed pre-
cipitation averaged over 58S–58N, and x denotes the

longitude. Note that only the positive value of the re-

gression remains before calculation, and the zonal in-

tegration is executed over 1208E–908W. This definition

is similar to that used in Kug et al. (2010) and Ham et al.

(2013). Figure 3 denotes the center of the reconstructed

and the original positive precipitation. The center of the

original positive convection varies from 1508E to 1608W,

and the reconstructed center mimics this variation well.

The correlation coefficient between the reconstructed

and original center is 0.88, confirming that the first EOF

represents the intermodel differences well, in the zonal

location of the ENSO-related precipitation center in

CMIP5 models. The observed center is at about 1708W,
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implying thatmost of themodels simulate westward-shifting

convection anomalies, while several models (model num-

bers 24–33) simulate realistic center locations.

The zonal shift of the ENSO-related convection cen-

ters in CMIP5 models is dynamically coupled to the

change in the ENSO-related circulation and SST. Figure 4

shows the regression coefficients between the first EOF

principal component (PC), corresponding to the domi-

nant eigenvector shown in Fig. 2a, and intermodel dif-

ferences of the Niño-3.4-regressed 850-hPa zonal wind
and SST. Note that only the values above the 95%
confidence level are shown, using the t test of the cor-

relation coefficient. The MME low-level zonal wind

response during ENSO shows westerly anomalies over

the equatorial western Pacific and easterly anomalies

over the Indian Ocean and Maritime Continent (con-

tour in Fig. 4a). Consistent with the positive precipitation

signal over the central Pacific in the first EOF, the first

EOF-regressed zonalwind anomalies exhibit thewesterly

over the central Pacific. The negative precipitation

anomalies over the western Pacific in first EOF are also

consistent with the local easterly. The precipitation and

zonal wind anomalies are zonally in phase, as pointed

out in previous studies (Clarke 1994). In short, the posi-

tive projection of the first EOF denotes that the west-

erly over the central Pacific intensifies, and the easterly

over the Maritime Continent extends to the western

Pacific.

The signal in the SST is also dynamically connected to

that in the precipitation and the zonal wind. As the

amplitude of Niño-3.4 on the regression is normalized to
have the anomalies per degrees Celsius in all models,
there is no signal over the eastern Pacific. Between the
western Pacific easterly and central Pacific westerly (i.e.,
low-level divergence zone), there is a negative SST sig-
nal around 1508E–1808. Because theMME of the ENSO

FIG. 2. The shading denotes the (a) first, (b) second, and (c) third EOF eigenvectors of

intermodel differences (i.e., deviation of the individualmodel’s response from theMME) in the

ENSO-related precipitation. The contour denotes the MME response of the ENSO-related

precipitation.
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SST exhibits a positive anomaly in this region, the pos-

itive projection of the first EOF confines the El Niño–
related positive SST anomalies to the east, which is

realistic.

Is this intermodel difference corresponding to the first

EOF related to the mean states? To answer this ques-

tion, Fig. 5 shows the correlation between the first EOF

PC and the intermodel difference of the climatological

precipitation, 850-hPa zonal wind, and SST during the

DJF season. For this, the deviation of each model’s cli-

matology from the MME is obtained, and then the

correlation with the first EOF PC is calculated. Note

that the period to define the climatology is from 1950 to

2005. In the precipitation, there is a strong positive

correlation over the equatorial central Pacific, implying

that the climate models with a positive projection of the

first EOF tend to have wetter climatology over the

equatorial region than the MME climatology. That is,

the models whose ENSO-related convection anomalies

are shifted to the east, compared to that of the MME,

have wetter climatology over the central Pacific than

that of the MME. This result is consistent with previous

studies that the dry climatology over the equatorial

central-eastern Pacific confines the ENSO-related con-

vection to the western Pacific (Kim et al. 2011a; Ham

and Kug 2012; Watanabe et al. 2011). This study con-

firms their findings in more rigorous ways using multi-

model CMIP5 output. In addition to the wetter signal

over the equatorial central Pacific, there is a dry signal

over the off-equatorial western Pacific, South Pacific,

and Maritime Continent, where the negative anomalies

exist in the first EOF mode.

FIG. 3. The zonal center of the original (x axis) and the re-

constructed (y axis) positive precipitationduringElNiño, in 34CMIP5
models. The observed zonal center is denoted as a red line.

FIG. 4. The shading denotes the regression coefficients between the first EOF principal

component (PC), corresponding to the dominant eigenvector shown in Fig. 2a, and intermodel

differences of the Niño-3.4-regressed (a) 850-hPa zonal wind and (b) SST. The contour denotes
the MME response of the 850-hPa zonal wind and SST, respectively, regressed onto the Niño-
3.4 index.
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In short, the positive projection of the first EOF im-

plies that climate models with wetter climatology allow

a large precipitation response to the ENSO SST forcing

over the central Pacific, while the dry climatology over

the off-equatorial western Pacific is associated with

stronger negative ENSO-related anomalies over that

region. On the other hand, a negative projection of the

first EOF means that the dry climatology over the

equatorial central Pacific forces the ENSO-related

convection center to shift to the west. Consistent with

climatological precipitation, the low-level climatological

zonal wind shows a westerly signal over the central Pa-

cific, with warmer climatological SST. The maximum

correlation coefficient between EOF PC and the basic

states is over 0.7 in SST, precipitation, and 850-hPa zonal

wind, which means that this relationship is quite robust

and significant.

It is found that the differences in the mean state and

the ENSO-related atmospheric response among climate

models can also modify the ENSO evolution properties.

To examine the difference in the ENSO evolution

according to the projection amplitude of the first EOF,

we first calculate the lagged regression of the intermodel

differences of the equatorially averaged (58S–58N)

ENSO-related SST anomalies onto the first EOF PC,

similar to Fig. 4; then, it is added (i.e., MME1 regression)

or subtracted (MME2 regression) to the MME response

of the ENSO-related SST anomalies from the pre-

ceding January and subsequent December of the ENSO

peak season (Fig. 6). Note that the result in the MME1
regression (MME 2 regression) is quite similar to the

result with the composite of models whose first EOF PC

is positive (negative). For the comparison, the ENSO

evolution in the observation is also shown.

The observed ENSO evolution shows stationary

evolution to a large extent, while it shows weak eastward

propagation before the ENSO peak, which resembles an

El Niño’s evolution after the 1980s (An andWang 2000;

Choi et al. 2011; Boucharel et al. 2013). A weak negative

SST signal related to the phase transition of ENSO is

shown after a 19-month lag. Interestingly, the models

with the positive projection of first EOF simulate

FIG. 5. The correlation between the first EOF PC, and the intermodel difference of the

(a) climatological precipitation, (b) 850-hPa zonal wind, and (c) SST, during the DJF season.
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realistic ENSO propagation and decay in addition to the

DJF precipitation response. When the first EOF is

positively projected (i.e., MME 1 regression), the pos-

itive SST anomalies weakly propagate from the western

to the eastern Pacific (i.e., eastward propagation). On

the other hand, when first EOF is negatively projected

(i.e., MME 2 regression), there is clear westward

propagation of the positive SST anomalies. According

to the recent studies of Santoso et al. (2013), the prop-

agation feature of the ENSO SST can be determined by

the strength of the climatological zonal current. They

found that the westward propagation of the ENSO SST

is associated with the stronger mean westward current.

When the mean westward current weakens, the west-

ward propagation of the ENSO SST becomes prom-

inent. Consistent with their argument, the models with

negative projection of the first EOF, which is associated

with the westward propagation of the ENSO, tend to

have stronger mean easterly trade winds (the opposite

pattern to Fig. 5b) and stronger mean westward cur-

rents. The other interesting point is that there are weak

negative SST signals at 212- and 9-month lags in the

MME 1 regression map, suggesting that the ENSO

transition is faster in the model with positive projection

of the first EOF. Consistent with previous studies, the

stronger ENSO-related easterly anomalies over the

western Pacific, as shown in Fig. 4a, can act to excite an

upwelling Kelvin wave, to lead to a faster transition to

La Niña (Kug and Kang 2006; Kug et al. 2006).

In this section, by applying the EOF analysis to each

model’s deviation map from the MME, it is found that

the dominant intermodel differences of the ENSO-

related precipitation anomalies are related to the zonal

shift of the maximum precipitation during El Niño. The
first EOF of intermodel differences has positive (nega-
tive) signal to the east (west) of the MME response,
implying that the positive projection of the first EOF
denotes the eastward shift of the convection center. As
the MME response systematically simulates the ENSO
convection center shifted to the west, the positive pro-
jection of the first EOF is associated with the realistic
ENSO response. The first EOF is closely linked to the
differences in the mean state; that is, it is associated with
the wet climatology over the equatorial central Pacific.

FIG. 6. (a) The observed equatorially averaged (58S–58N) ENSO-related SST anomalies from the preceding January (i.e.,212 on the y

axis), to subsequent December (i.e., 112 on the y axis) of the ENSO peak season. Also shown is the regression of the intermodel

differences of the equatorially averaged ENSO-related SST anomalies onto the first EOF PC from the preceding January to subsequent

December of the ENSO peak season, which is (b) added to and (c) subtracted from the MME response of the Niño-3.4-regressed SST.
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The mean state in the SST and low-level zonal wind are
dynamically consistent with the precipitation. Based on
those results, the following question naturally arises: Do
the models with the mean state associated with the
positive projection of the first EOF have a more realistic
climatology than the other models? To answer this
question, we will start the next section by investigating
the climatological bias.

4. The improvement of ENSO systematic error
through mean bias correction

Figure 7 shows the climatological MME bias in the

DJF precipitation, which shows the dry bias over the

equatorial western-central Pacific and wet bias over

the off-equatorial regions and equatorial western Pa-

cific. This pattern is also consistent with Lin (2007) with

CMIP3 data. The spatial pattern of the MME pre-

cipitation bias tends to be opposite to that of the first

EOF-related mean state. This indicates that the positive

projection of the first EOF tends to compensate for the

systematic error related to the MME bias. For example,

the equatorial dry MME bias over the equatorial

western-central Pacific is compensated by the equatorial

positive signal in the climatological associated with the

first EOF, as shown in Fig. 5a. Similarly, the wet MME

biases over the off-equatorial regions are cancelled by

the off-equatorial negative signal in the mean state,

coupled to the first EOF. As a result, the pattern re-

gression between the mean state coupled to the first

EOF, and each mode’s bias, is generally negative

(Fig. 7b); the pattern regression of the MME is 20.53.

This implies that climate models with a positive pro-

jection of the first EOF tend to have a smaller preci-

pitation bias as shown in Fig. 7c, in addition to smaller

ENSO-related precipitation errors, as shown in the

previous section.

As a better climatological precipitation tends to

guarantee a more realistic ENSO precipitation re-

sponse, one can imagine how the ENSO precipitation

FIG. 7. (a) The climatological MME bias in the DJF precipitation, and (b) the pattern re-

gression (black bars) and correlation (red line) of MME (0 on the x axis) and each model’s (1–

34 on the x axis) bias, onto the first EOF-related mean state. (c) The RMSE of climatological

bias. Note that the observed precipitation climatology is based on the 1979–2005 period.
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response in climatemodels would be improved when the

climatological precipitation bias is diminished. In this

aspect, we can correct the climatological precipitation in

a statistical way, and then examine howmuch the ENSO

precipitation response is improved. The statistical cor-

rection method is based on a simple linear regression, as

follows:

ENSOCORR
k
5ENSOORG

k
2 �

N

i51

ai,kEOFi , (2)
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[Mi]

2

, and (3)

Mi5

�
Nm

k51

[CkEOF_PCi,k]

�
Nm

k51
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where ENSOCORRk
, ENSOORGk

, and EOFi are the

ENSO-related precipitation anomalies after the statis-

tical correction and before the correction of the kth

model and the ith EOF eigenvector shown in Fig. 2,

respectively. Also, Mi is the spatial distribution of the

regression coefficient of the intermodel difference of the

DJF precipitation climatology (Ck) with respect to

the ith EOF PC time series (EOF_PCi,k) (e.g., Fig. 5a).

Note that k is a model number, and Nm is the total

number of models, which is 34 in this study. The correc-

tion for the kth model is done by multiplying the co-

efficient ai,j, which is defined as the pattern regression

between Mi, and the mean precipitation bias in the kth

model (Biask).We utilized 10 dominant EOFmodes (i.e.,

N is 10 in this study). The general result in this paper is

not much dependent on the number of EOF modes

once it is over 10 or so because the explained variance

of the 10th EOF is less than 2%; therefore, the con-

tribution of minor EOFs than 10th EOF is ignorable

even ifMi were quite similar to the climatological bias.

The pattern regression is done within the Pacific basin

(158S–158N, 808E–908W) to focus on the equatorial

variability. Assuming only first EOF is used for the

correction, the pattern of M1 (i.e., Fig. 5a) is negative

projected onto MME bias field (i.e., Fig. 7a), and the

model-averaged a1,k (i.e., �Nm
k51a1,k) is negative (i.e.,

20.52). Simply, this number is multiplied to the first

EOF (i.e., Fig. 2a) and then subtracted from the origi-

nal ENSO response (i.e., ENSOORG) to make a cor-

rection (i.e., ENSOCORR). As a result, the projected

amplitude of first EOF onto ENSOCORR is increased to

1.37 from 0.80 in ENSOORG, which becomes similar to

the observed projection amplitude (i.e., 1.66).

This algorithm is to correct the ENSO-related atmo-

spheric response by using the linear relationship be-

tween the intermodel differences in the mean state and

the ENSO response. The bias projected onto the dom-

inant EOFs is linearly removed to correct the ENSO-

related precipitation anomalies. According to this

formulation, if, for example, the climatological bias of

the 10th model were completely opposite to the first

EOF-related mean state (M1), only a1,10 would have

negative values, to correct the original ENSO response.

On the other hand, if the amplitude of bias projected on

the EOF mode-related mean state (Mi) were small, that

would lead to a small correction, as ai,j is small. Note that

this statistical method only utilizes the intermodel dif-

ferences of climatological bias and ENSO-related pre-

cipitation to make a correction, and no prior information

about the targeted field (i.e., the observed atmospheric

ENSO response) is given.

Figure 8 shows the pattern projection of MME bias

onto each EOF (i.e., equivalent to MME of ai,j), to ex-

amine the contribution of each EOF to the statistical

correction method. As shown in Fig. 7b, the spatial

pattern is generally opposite between the first EOF-

related mean state and the MME bias; therefore, the

contribution of the first EOF is relatively larger than

that of the other EOFs. The contribution of each EOF is

smaller for higher modes; however, it is interesting that

the contribution of the seventh EOF is quite large.

Please note that the small explained variance of the

minor EOFs is for intermodel differences (i.e., differ-

ences between an individual model and the MME),

which does not necessarily guarantee the small

FIG. 8. The pattern projection of the MME bias onto each EOF.
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contribution of minor EOFs onto the climatological bias

(i.e., the difference between an individual model and

observation).

To investigate the contribution of the seventh EOF in

more detail, Fig. 9 shows the seventh EOF and the

correlation between the seventh EOF PC. The result

shows that the seventh EOF is related to the distribution

of equatorial and off-equatorial precipitation anomalies

(Fig. 9a). Further, this intermodel difference is associated

with climatological precipitation over the off-equatorial

western and central Pacific. That is, the seventh EOF

shows that the off-equatorial precipitation duringElNiño
is related to the local mean precipitation. In other words,
the model with a wetter ITCZ can lead to stronger local
positive precipitation anomalies (or, a dryer ITCZ is
linked to stronger local negative precipitation anoma-
lies). As the negative mean precipitation signal over the
off-equatorial western and central Pacific is opposite to
the MME precipitation bias, the seventh EOF is there-
fore negatively projected onto the MME precipitation
bias. According to the algorithm, in the model with dry
bias over the off-equatorial western and central Pacific,
the statistical correction using the seventh EOF acts to
enhance the negative precipitation anomalies over the
western Pacific.
Figure 10 shows the precipitation response during the

ENSO in the observation, theMME, and theMMEafter

the statistical correction. Note that the observed and the

original MME responses are the same, as shown in

Fig. 1. In the observation, the positive precipitation

anomalies over the equatorial central Pacific are be-

tween 1808 and 1708W. The center of the positive pre-

cipitation is slightly to the south of the equator, and the

amplitude is about 3mmday21 8C21. The amplitude of

the negative precipitation anomalies over the western

Pacific is between 21.5 and 22mmday21 8C21, and the

center is located over the off-equatorial Northern

Hemisphere. The negative precipitation anomalies

along the SPCZ are also clear. In the MME, the positive

precipitation center shifts to the west, and the maximum

amplitude is weaker than the observed. In addition, it is

too much zonally elongated, and the meridional width is

narrower than the observed. The negative precipitation

anomalies over the western Pacific are weaker and ex-

tend too far to the east. Also, the negative precipitation

along the SPCZ is systematically weaker.

After the correction, those deficiencies listed above

are distinctively improved. The center of the positive

precipitation anomalies shifts to the east, compared to

that of the original MME response, and the zonal loca-

tion of the positive precipitation center becomes similar

to the observed. Also, it is to the south of the equator, as

in the observed. The amplitude is also increased, to

reach 3mmday21 8C21 at peak location. The amplitude

of the negative precipitation over the off-equatorial

western Pacific is intensified over 22mmday21 8C21,

after the correction. In addition, the positive pre-

cipitation anomalies over the western Pacific shrink

FIG. 9. (a) The seventh EOF of the intermodel differences in the ENSO-related pre-

cipitation. (b) The correlation between the seventh EOF PC and the intermodel difference of

the climatological precipitation (i.e., as in Fig. 5a, but with the seventh EOF).
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relatively to the east, after the correction, while the

MME shows that the positive precipitation anomalies

extend too far to the west. The negative precipitation

anomalies along the SPCZ are also intensified. As

shown in Fig. 8, the contribution of the first EOF is

largest, and it especially acts to correct the zonal loca-

tion of positive precipitation anomalies related to the

ENSO. The third EOF contributes to widening the

meridional width of the positive convection center (not

shown). The amplitude of the negative precipitation

over the off-equatorial western Pacific seems to be

mainly corrected by the first and seventh EOFs. The

pattern correlation between the observed and theMME

after the correction over the tropical Pacific basin (158S–
158N, 808E–908W) is 0.92; while that between the ob-

served and the original MMEwas 0.81. This implies that

the correction of the climatology can improve the ENSO

simulations.

As well as the MME response, it is worthwhile to ex-

amine the individual model’s pattern after the correction.

Figure 11 shows the pattern correlation between the ob-

served and the simulated ENSO precipitation responses

before (gray) and after the correction (red) in each

model. The model number is the same as in Fig. 1, and

note that it is a low order of the first EOFPC. Thatmeans

that the original atmospheric ENSO response in the

model with low numbers shifts to the west, compared to

the observed. Before the correction, the pattern correla-

tion varies between 0.3 and 0.8. It is clear that after the

correction, the pattern correlations in most of the climate

models are distinctively improved. After the correction,

the pattern correlation in most climate models is higher

than 0.6. It is interesting that the improvement after the

correction in the model with low numbers tends to be

higher than the others. For example, the pattern corre-

lation of the original response of the model number 1 is

lower than 0.3; however, that after the correction is over

0.7. This implies that the models with larger bias and

systematic error tend to be much more beneficial to the

correction than the others.

FIG. 10. The precipitation response during the ENSO in the (a) observation, (b) MME, and

(c) MME after the statistical correction.
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To examine this point inmore detail, Fig. 12 shows the

scatter diagram between the pattern correlation be-

tween the observed and simulated response, before and

after the correction, in all models. Note that the color of

each dot corresponds to the first EOF PC. Asmentioned

in the previous paragraph, the pattern correlation after

the correction is above 0.6, except for one model, while

one-third of the model’s original response is below 0.6.

Except for two models, the statistical correction pro-

posed in this study improves the atmospheric ENSO

responses in climate models. In addition, it is clearly

shown that after the correction, the model with low

number (i.e., low first EOF PC) tends to improve much

more than the others. In models with first EOF PC lower

than21.8, the improvement after the correction is about

0.4. When the first EOF PC is between 21.8 and 21.2,

the original pattern correlation is slightly larger than 0.4,

while the corrected pattern correlation is about 0.8, so

that there is roughly an improvement of 0.4. On the

other hand, in themodels whose first EOF PC is small or

positive, the improvement after the correction is about

0.1–0.2, which is systematically smaller than the models

with low first EOF PC. However, as their pattern cor-

relation was high before the correction, the pattern

correlation after the correction is similar for all models.

In short, there is distinctive improvement in simulating

the atmospheric ENSO response after the statistical

correction inmost climatemodels, and the improvement

is robust for the models whose original ENSO atmo-

spheric response was far from realistic.

5. Concluding discussion

In this study, the dominant intermodel differences

(i.e., deviations from the MME) in the simulated at-

mospheric ENSO responses, and their relationship with

climatological state, are investigated, using CMIP5

models. It is found that the dominant intermodel dif-

ference of the ENSO precipitation in CMIP5 models is

associated with the zonal location of the positive pre-

cipitation center during El Niño. The first EOF shows
the positive (negative) values to the east (west) of the
MME response, indicating that the positive projection of
the first EOF shifts the atmospheric ENSO response to
the east compared with theMME response. The coupled
pattern to the first EOF shows an additional westerly

FIG. 11. The pattern correlation between the observed and the simulated ENSO precipitation

response before (gray bars) and after the correction (red bars), in each model.

FIG. 12. The scatter diagram between the pattern correlation

between the observation and simulated response before (x axis)

and after the correction (y axis), in all models. Note that the first

EOF PC is shaded.

1 FEBRUARY 2015 HAM AND KUG 1011



(easterly) at the location of the enhanced (reduced) pre-
cipitation. As the MME response exhibits a westward-
shifted response, with extension of positive ENSO SST
to the western Pacific compared with the observed, the
model simulation becomes realistic when the first EOF is
positively projected.
It is found that this dominant intermodel difference in

the ENSO response is strongly correlated with the dif-

ferences in the basic state. The models with wetter cli-

matology than the MME climatology over the central

Pacific tend to shift positive ENSO precipitation

anomalies to the east (i.e., positive projection of the first

EOF). As the models tend to have dry bias over the

equator, the models with wetter climatology than the

MME have realistic climatology. The correlation be-

tween the first EOF PC and intermodel difference of

mean precipitation during the DJF season is over 0.7,

implying that this relationship is quite robust. Consistent

with wet climatology over the central Pacific, the models

whose ENSO response is shifted to the east exhibit

warmer SST climatology over the eastern Pacific, and

a stronger low-level westerly over the central Pacific,

than the MME.

Those intermodel differences in the ENSO response

and climatology also lead to different ENSO periods

and propagations. The models that are positively pro-

jected onto the first EOF tend to have shorter ENSO

periods, which resembles the observation, than the

models that are negatively projected. This might be re-

lated to the stronger ENSO-related easterly over the

Maritime Continent, leading to faster transition of the

ENSO. In addition, a weaker mean easterly (i.e.,

stronger eastward) current over the central Pacific in the

models with positive projection of the first EOF might

lead to an eastward propagation of the ENSO SST. On

the other hand, the models that are negatively projected

onto the first EOF are associated with longer periods of

the ENSO, with westward propagation.

A statistical correction of the ENSO response by

minimizing the mean bias is developed by utilizing the

strong relationship between the mean state and the at-

mospheric ENSO response. As the models with better

climatological states tend to simulate more realistic at-

mospheric ENSO responses, this statistical method to

correct the mean bias mostly improves the ENSO re-

sponse. After the statistical correction, the deficiencies

in simulating theMMEENSOprecipitation are, to some

extent, compensated for. The center of positive pre-

cipitation related to El Niño shifts to the southeast, and
the negative precipitation over the off-equatorial west-
ern Pacific and along the SPCZ becomes stronger, which
becomes realistic. The pattern correlation of atmo-
spheric MME response increases from 0.81 before the

correction to 0.92 after the correction over the tropical
Pacific basin. As well as the MME response, there is
a clear improvement of the individual model’s ENSO

response. In particular, this improvement is robust in the

models whose original response is far from realistic.

That is, the improvement in the pattern correlation be-

tween the observed and the simulated is about 0.4 in the

models with relatively large errors in the climatological

precipitation and ENSO response, whereas it is between

0.1 and 0.2 in the models with relatively small errors.

This study supports the arguments in previous studies

that a realistic climatology guarantees better in-

terannual variability (Fennessy et al. 1994; Sperber and

Palmer 1996; Kang et al. 2002; Lee et al. 2010). While

previous studies focused on finding this relationship, this

study further introduces a methodology to utilize this

relationship for improving themodel simulation. Insofar

as a more realistic climatology tends to be linked to

better interannual variability, it is obvious that the sta-

tistical correction introduced in this study leads to an

improvement of the simulation quality.

As this statistical method does not include any prior

information about the targeted field (i.e., the observed

ENSO precipitation response in this study), this method

can therefore be applied to the climate change response.

O’Gorman (2012) showed that the model-simulated

response of tropical precipitation extremes to inter-

annual climate variability in current climate is strongly

correlated with their response to longer-term climate

change. This implies that the relationship between two

different time scales in current climate can be success-

fully extrapolated to the relationship between current

climate and climate change. In addition, there are some

clues that the current climate condition is closely linked

to the climate change that the changes in the pre-

cipitation after the climate change is greater as the

current climatology is wetter, and weaker as the current

climatology is drier (i.e., ‘‘wet gets wetter, and dry gets

drier’’ response) (Knutson and Manabe 1995; Held and

Soden 2006; Wentz et al. 2007; Chou et al. 2013). Based

on those studies, this method might provide clues to

deduce some convincing conclusion on climate sensi-

tivity using climate models.

One can wonder about the possible implication of the

proposed method to address the two types of El Niño
events (Ashok et al. 2007; Kao and Yu 2009; Kug et al.

2009; Yeh et al. 2009). It seems that the zonal phase

differences of El Niño response, which is a key feature in
whether the model can simulate two equilibrium states
of the El Niño, can be also influenced by the mean state.
Based on the previous studies ofHam and Kug (2012), it

is shown that the independence of the two types of El

Niño events is quite different from model to model, and

1012 JOURNAL OF CL IMATE VOLUME 28



is significantly correlated with the climatological wetness
over the equatorial central-eastern Pacific. As the clima-
tological precipitation over the equatorial central-eastern
Pacific is increased, the independence of the two types of
El Niño events tends to increase. As most of models tend
to underestimate the independence between two types of
El Niño events (i.e., present a single type of El Niño) and
indicate drier equatorial wetness than the observed, the
application of this statistical correction method would
help to simulate realistic independence between two types
of El Niño in climate models.
In addition, this can also be applied to the multimodel

dynamical forecast dataset by the North American

Multimodel Ensemble (NMME) project (Kirtman et al.

2014), or EUROSIP (http://old.ecmwf.int/products/

forecasts/seasonal/documentation/eurosip/ch3.html). The

basic idea is to replace the ENSO-related component in

the prediction to the corrected pattern. First, the spatial

pattern of the ENSO-related precipitation is calculated in

each prediction system; then the corrected ENSO-related

precipitation is obtained using the proposed method in

this study. Once this relationship is obtained, the pre-

dicted precipitation pattern regressed onto the original

ENSO pattern is replaced to the corrected ENSOpattern.

Based on studies suggesting that the seasonal forecast skill

is proportional to the simulation quality in the clima-

tology over the tropics (Lee et al. 2010; Ham et al.

2012), it is probable that the application of the pro-

posed method to the operational forecast system would

improve the forecast skills. Also, this method has some

advantages, in being applied to forecast data. As the

proposed statistical method only requires a climato-

logical bias, which is not very sensitive to the validation

method (or slight change of number of samples), this

method is free from the overfitting problem. Therefore,

it can provide a stable solution without sudden differ-

ences between the training and forecast period. As well as

the prediction skill over the tropics, it can also improve the

prediction quality over themidlatitude climate, with the aid

of realistic teleconnections.

However, it should be noted that this method would

not always improve the simulation quality when an un-

realistic climatology is linked to a better simulation of

the variability. For example, Kim et al. (2011b) showed

that a model with realistic climatological precipitation

failed to simulate a realistic eastward propagating MJO

signal. In this case, the statistical correction based on the

quality of the climatological state might worsen the MJO

simulation quality. Therefore, before applying thismethod

to other targets, careful analysis should be conducted.

The EOF analysis to diagnose the dominant inter-

model differences is easy to apply and can be a powerful

tool to understand the simulation quality in current

climate models. It might be especially useful when the

spatial pattern of systematic errors is diverse among cli-

mate models. With the analysis tool introduced in this

study, we can easily categorize systematic errors in high

order of explained variance, to focus on the dominant

errors. In addition, as the number ofmodelswe can utilize

is expected to increase, such a categorization would be

essential in the future. Otherwise, we have to compare

the individual model’s response one by one to examine

the systematic errors in climate models. This is an im-

portant issue, as the MME response obviously does not

represent the individual model’s response (e.g., Fig. 1);

also, this is essential to providing directions to the climate

modeling community, to improve the quality of climate

models, in terms of both climatology and variability.

In addition, this study can boost the climate com-

munity’s unequivocal demands for the multimodel

dataset, by maximizing its application. First, the re-

lationship between intermodel diversity in the in-

terannual variability and mean state will become much

more robust and clearer, as the number of utilized

models is increased; and this implies that the model

simulation can be highly reliable, by using as many

models as possible. Second, by not just taking an average

ofmultimodel output to cancel out the systematic errors,

this study shows that the individual model’s spatial error

pattern from the MME also contains important in-

formation that is worthwhile to utilize. Therefore, this

study can accelerate the need of huge international

collaborations like CMIP, to reach a solid conclusion for

worldwide climate information users.
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